Abstract
In recent years deep learning models improve the diagnosis performance of many diseases especially respiratory diseases. This paper will propose an evaluation for the performance of different deep learning models associated with the raw lung auscultation sounds in detecting respiratory pathologies to help in providing diagnostic of respiratory pathologies in digital recorded respiratory sounds. Also, we will find out the best deep learning model for this task. In this paper, three different deep learning models have been evaluated on non-augmented and augmented datasets, where two different datasets have been utilized to generate four different sub-datasets. The results show that all the proposed deep learning methods were successful and achieved high performance in classifying the raw lung sounds, the methods were applied on different datasets and used either augmentation or non-augmentation. Among all proposed deep learning models, the CNN–LSTM model was the best model in all datasets for both augmentation and non-augmentation cases. The accuracy of CNN–LSTM model using non-augmentation was 99.6%, 99.8%, 82.4%, and 99.4% for datasets 1, 2, 3, and 4, respectively, and using augmentation was 100%, 99.8%, 98.0%, and 99.5% for datasets 1, 2, 3, and 4, respectively. While the augmentation process successfully helps the deep learning models in enhancing their performance on the testing datasets with a notable value. Moreover, the hybrid model that combines both CNN and LSTM techniques performed better than models that are based only on one of these techniques, this mainly refers to the use of CNN for automatic deep features extraction from lung sound while LSTM is used for classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.