Abstract

BackgroundLow-dose computed tomography (LDCT) are performed routinely for lung cancer screening. However, a large amount of nonpulmonary data from these scans remains unassessed. We aimed to validate a deep learning model to automatically segment and measure left atrial (LA) volumes from routine NCCT and evaluate prediction of cardiovascular outcomes. MethodsWe retrospectively evaluated 273 patients (median age 69 years, 55.5% male) who underwent LDCT for lung cancer screening. LA volumes were quantified by three expert cardiothoracic radiologists and a prototype AI algorithm. LA volumes were then indexed to the body surface area (BSA). Expert and AI LA volume index (LAVi) were compared and used to predict cardiovascular outcomes within five years. Logistic regression with appropriate univariate statistics were used for modelling outcomes. ResultsThere was excellent correlation between AI and expert results with an LAV intraclass correlation of 0.950 (0.936–0.960). Bland-Altman plot demonstrated the AI underestimated LAVi by a mean 5.86 ​mL/m2. AI-LAVi was associated with new-onset atrial fibrillation (AUC 0.86; OR 1.12, 95% CI 1.08–1.18, p ​< ​0.001), HF hospitalization (AUC 0.90; OR 1.07, 95% CI 1.04–1.13, p ​< ​0.001), and MACCE (AUC 0.68; OR 1.04, 95% CI 1.01–1.07, p ​= ​0.01). ConclusionThis novel deep learning algorithm for automated measurement of LA volume on lung cancer screening scans had excellent agreement with manual quantification. AI-LAVi is significantly associated with increased risk of new-onset atrial fibrillation, HF hospitalization, and major adverse cardiac and cerebrovascular events within 5 years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.