Abstract
Prognostic prediction for surgical treatment of gastric cancer remains valuable in clinical practice. This study aimed to develop survival models for postoperative gastric cancer patients. Eleven thousand seventy-five patients from the Surveillance, Epidemiology, and End Results (SEER) database were included, and 122 patients from the Chinese database were used for external validation. The training cohort was created to create three separate models, including Cox regression, RSF, and DeepSurv, using data from the SEER database split into training and test cohorts with a 7:3 ratio. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The new risk stratification based on the best model will be compared with the AJCC stage on the test and Chinese cohorts using decision curve analysis (DCA), the net reclassification index (NRI), and integrated discrimination improvement (IDI). It was discovered that the DeepSurv model predicted postoperative gastric cancer patients' overall survival (OS) with a c-index of 0.787; the area under the curve reached 0.781, 0.798, 0.868 at 1-, 3- and 5- years, respectively; the Brier score was below 0.25 at different time points; showing an advantage over the Cox and RSF models. The results are also validated in the China cohort. The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values (test cohort: 0.399, 0.288, 0.267 for 1-, 3- and 5-year OS prediction; China cohort:0.399, 0.288 for 1- and 3-year OS prediction) and IDI (test cohort: 0.188, 0.169, 0.157 for 1-, 3- and 5-year OS prediction; China cohort: 0.189, 0.169 for 1- and 3-year OS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.05). DCA showed that the risk score stratification was clinically useful and had better discriminative ability than the AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of patients with postoperative gastric cancer. In this study, a high-performance prediction model for the postoperative prognosis of gastric cancer was developed using DeepSurv, which offers essential benefits for risk stratification and prognosis prediction for each patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.