Abstract

Automatic defect classification is vital to ensure product quality, especially for steel production. In the real world, the amount of collected samples with labels is limited due to high labor costs, and the gathered dataset is usually imbalanced, making accurate steel defect classification very challenging. In this paper, a novel deep learning model for imbalanced multi-label surface defect classification, named ImDeep, is proposed. It can be deployed easily in steel production lines to identify different defect types on the steel’s surface. ImDeep incorporates three key techniques, i.e. Imbalanced Sampler, Fussy-FusionNet, and Transfer Learning. It improves the model’s classification performance with multi-label and reduces the model’s complexity over small datasets with low latency. The performance of different fusion strategies and three key techniques of ImDeep is verified. Simulation results prove that ImDeep accomplishes better performance than the state-of-the-art over the public dataset with varied sizes. Specifically, ImDeep achieves about 97% accuracy of steel surface defect classification over a small imbalanced dataset with a low latency, which improves about 10% compared with that of the state-of-the-art.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.