Abstract

Prediction of occurrence of a seizure would be of greater help to make necessary precaution for taking care of the patient. A Deep learning model, recurrent neural network (RNN), is designed for predicting the upcoming values in the EEG values. A deep data analysis is made to find the parameter that could best differentiate the normal values and seizure values. Next a recurrent neural network model is built for predicting the values earlier. Four different variants of recurrent neural networks are designed in terms of number of time stamps and the number of LSTM layers and the best model is identified. The best identified RNN model is used for predicting the values. The performance of the model is evaluated in terms of explained variance score and R2 score. The model founds to perform well number of elements in the test dataset is minimal and so this model can predict the seizure values only a few seconds earlier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.