Abstract
To establish and validate a non-invasive deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict vessels encapsulating tumor clusters (VETC) patterns in hepatocellular carcinoma (HCC). This retrospective study included consecutive HCC patients with preoperative CEUS images and available tissue specimens. Patients were randomly allocated into the training and test cohorts. CEUS images were analyzed using the ResNet-18 convolutional neural network for the development and validation of the VETC predictive model. The predictive value for postoperative early recurrence (ER) of the proposed model was further evaluated. A total of 242 patients were enrolled finally, including 195 in the training cohort (54.6 ± 11.2 years, 178 males) and 47 in the test cohort (55.1 ± 10.6 years, 40 males). The DL model (DL signature) achieved favorable performance in both the training cohort (area under the receiver operating characteristics curve [AUC]: 0.92, 95% confidence interval [CI]: 0.88-0.96) and test cohort (AUC: 0.90, 95% CI: 0.82-0.99). The stratified analysis demonstrated good discrimination of DL signature regardless of tumor size. Moreover, the DL signature was found independently correlated with postoperative ER (hazard ratio [HR]: 1.99, 95% CI: 1.29-3.06, p = 0.002). C-indexes of 0.70 and 0.73 were achieved when the DL signature was used to predict ER independently and combined with clinical features. The proposed DL signature provides a non-invasive and practical method for VETC-HCC prediction, and contributes to the identification of patients with high risk of postoperative ER. This DL model based on contrast-enhanced US displayed an important role in non-invasive diagnosis and prognostication for patients with VETC-HCC, which was helpful in individualized management. Preoperative biopsy to determine VETC status in HCC patients is limited. The contrast-enhanced DL model provides a non-invasive tool for the prediction of VETC-HCC. The proposed deep-learning signature assisted in identifying patients with a high risk of postoperative ER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.