Abstract

The objective of our work was to develop deep learning methods for extracting and normalizing patient-reported free-text side effects in a cancer chemotherapy side effect remote monitoring web application. The F-measure was 0.79 for the medical concept extraction model and 0.85 for the negation extraction model (Bi-LSTM-CRF). The next step was the normalization. Of the 1040 unique concepts in the dataset, 62, 3% scored 1 (corresponding to a perfect match with an UMLS CUI). These methods need to be improved to allow their integration into home telemonitoring devices for automatic notification of the hospital oncologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.