Abstract

A super-resolution reconstruction model for the subgrid scale (SGS) turbulent flow field in large-eddy simulation (LES) is proposed, and it is called the meta-learning deep convolutional neural network (MLDCNN). Direct numerical simulation (DNS) data of isotropic turbulence are used as the dataset of the model. The MLDCNN is an unsupervised learning model, which only includes high-resolution DNS data without manually inputting preprocessed low-resolution data. In this model, the training process adopts the meta-learning method. First, in the a priori test, the SGS turbulent flow motions in the filtered DNS (FDNS) flow field are reconstructed, and the energy spectrum and probability density function of the velocity gradient of the DNS flow field are reconstructed with high accuracy. Then, in the a posteriori test, the super-resolution reconstruction of the LES flow field is carried out. The difficulty of LES flow field reconstruction is that it contains filtering loss and subgrid model errors relative to the DNS flow field. The super-resolution reconstruction of the LES flow field achieves good results through this unsupervised learning model. The proposed model makes a good prediction of small-scale motions in the LES flow field. This work improves the prediction accuracy of LES, which is crucial for the phenomena dominated by small-scale motions, such as relative motions of particles suspended in turbulent flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call