Abstract
BackgroundPatient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan. In this study, a patient-specific dose prediction model was developed for a left-sided breast clinical case using deep learning, and its performance was compared with that of conventional knowledge-based planning using RapidPlan™.MethodsPatient-specific dose prediction was performed using a contour image of the planning target volume (PTV) and organs at risk (OARs) with a U-net-based modified dose prediction neural network. A database of 50 volumetric modulated arc therapy (VMAT) plans for left-sided breast cancer patients was utilized to produce training and validation datasets. The dose prediction deep neural network (DpNet) feature weights of the previously learned convolution layers were applied to the test on a cohort of 10 test sets. With the same patient data set, dose prediction was performed for the 10 test sets after training in RapidPlan. The 3D dose distribution, absolute dose difference error, dose-volume histogram, 2D gamma index, and iso-dose dice similarity coefficient were used for quantitative evaluation of the dose prediction.ResultsThe mean absolute error (MAE) and one standard deviation (SD) between the clinical and deep learning dose prediction models were 0.02 ± 0.04%, 0.01 ± 0.83%, 0.16 ± 0.82%, 0.52 ± 0.97, − 0.88 ± 1.83%, − 1.16 ± 2.58%, and − 0.97 ± 1.73% for D95%, Dmean in the PTV, and the OARs of the body, left breast, heart, left lung, and right lung, respectively, and those measured between the clinical and RapidPlan dose prediction models were 0.02 ± 0.14%, 0.87 ± 0.63%, − 0.29 ± 0.98%, 1.30 ± 0.86%, − 0.32 ± 1.10%, 0.12 ± 2.13%, and − 1.74 ± 1.79, respectively.ConclusionsIn this study, a deep learning method for dose prediction was developed and was demonstrated to accurately predict patient-specific doses for left-sided breast cancer. Using the deep learning framework, the efficiency and accuracy of the dose prediction were compared to those of RapidPlan. The doses predicted by deep learning were superior to the results of the RapidPlan-generated VMAT plan.
Highlights
Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan
As radiation therapy treatment technology is advancing, the treatment outcomes of cancer patients are gradually improving. Advanced treatment modalities, such as intensity modulation radiation therapy (IMRT) and volumetric arc therapy (VMAT), have been applied to deliver higher doses to tumor areas, while reducing the therapeutic doses to normal organs compared to conventional 3D conformal radiation therapy
The ability of these advanced treatment methods to produce an optimal plan varies according to the experience of the planner, and a planning timeconsuming task must be repeated until the treatment goal is reached
Summary
Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan. A patient-specific dose prediction model was developed for a left-sided breast clinical case using deep learning, and its performance was compared with that of conventional knowledge-based planning using RapidPlanTM. Studies [1,2,3,4,5,6] have been conducted to improve treatment planning efficiency and quality, while reducing planning time and effort by using knowledge-based techniques for dose prediction in radiotherapy. A knowledge-based planning (KBP) model is generated using a previous, clinically approved treatment plan data-based regression analysis as the dose-volume histogram (DVH) estimation algorithm of RapidPlan. The most similar treatment plan is provided within the estimated DVH model
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.