Abstract

We introduce a novel method for identifying the mass composition of ultra-high-energy cosmic rays using deep learning. The key idea of the method is to use a chain of two neural networks. The first network predicts the type of a primary particle for individual events, while the second infers the mass composition of an ensemble of events. We apply this method to the Monte-Carlo data for the Telescope Array Surface Detectors readings, on which it yields an unprecedented low error of 7% for 4-component approximation. We also discuss the problems of applying the developed method to the experimental data, and the way they can be resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.