Abstract
With smartphones and wearable devices becoming ubiquitous, they offer an opportunity for large-scale voice sampling. This systematic review explores the application of deep learning models for the automated analysis of voice samples to detect vocal cord pathologies. We conducted a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)reporting guidelines. We searched MEDLINE and Embase databases for original publications on deep learning applications for diagnosing vocal cord pathologies between 2002 and 2022. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Out of the 14 studies that met the inclusion criteria, data from a total of 3037 patients were analyzed. All studies were retrospective. Deep learning applications targeted Reinke's edema, nodules, polyps, cysts, unilateral cord paralysis, and vocal fold cancer detection. Most pathologies had detection accuracy above 90%. Thirteen studies (93%) exhibited a high risk of bias and concerns about applicability. Technology holds promise for enhancing the screening and diagnosis of vocal cord pathologies. While current research is limited, the presented studies offer proof of concept for developing larger-scale solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.