Abstract

BackgroundCRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target knockout efficacy of CRISPR/Cas9 system with high sensitivity and specificity. However, when CRISPR/Cas9 system is operating, unexpected cleavage may occur at some sites, known as off-target. Presently, a number of prediction methods have been developed to predict the off-target propensity of sgRNA at specific DNA fragments. Most of them use artificial feature extraction operations and machine learning techniques to obtain off-target scores. With the rapid expansion of off-target data and the rapid development of deep learning theory, the existing prediction methods can no longer satisfy the prediction accuracy at the clinical level.ResultsHere, we propose a prediction method named CnnCrispr to predict the off-target propensity of sgRNA at specific DNA fragments. CnnCrispr automatically trains the sequence features of sgRNA-DNA pairs with GloVe model, and embeds the trained word vector matrix into the deep learning model including biLSTM and CNN with five hidden layers. We conducted performance verification on the data set provided by DeepCrispr, and found that the auROC and auPRC in the “leave-one-sgRNA-out” cross validation could reach 0.957 and 0.429 respectively (the Pearson value and spearman value could reach 0.495 and 0.151 respectively under the same settings).ConclusionOur results show that CnnCrispr has better classification and regression performance than the existing states-of-art models. The code for CnnCrispr can be freely downloaded from https://github.com/LQYoLH/CnnCrispr.

Highlights

  • CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation

  • The Cas9 protein cleaves the target DNA at the site three bases upstream of the Protospacer adjacent motif (PAM) under the guidance of the Single-guide RNA (sgRNA) sequence, and performs subsequent gene editing operations: Introduction of an insertion/deletion base to cause mutation of a gene at a target position by nonhomologous end-joining (NHEJ); or utilization of the “donor template” provided by foreign DNA to recombine with a mutant target to achieve DNA-based editing of the genome by homology-directed repair (HDR) [17,18,19]

  • The structure of the benchmark framework of CnnCrispr is described in detail below: The first layer of CnnCrispr is an embedding layer, which is used for input of the vector obtained by Global vector (GloVe) model

Read more

Summary

Introduction

CRISPR/Cas system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. A number of prediction methods have been developed to predict the off-target propensity of sgRNA at specific DNA fragments. The Cas protein cleaves the target DNA at the site three bases upstream of the PAM under the guidance of the sgRNA sequence, and performs subsequent gene editing operations: Introduction of an insertion/deletion (indel) base to cause mutation of a gene at a target position by nonhomologous end-joining (NHEJ); or utilization of the “donor template” provided by foreign DNA to recombine with a mutant target to achieve DNA-based editing of the genome by homology-directed repair (HDR) [17,18,19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.