Abstract
ABSTRACTFlagging of Radio Frequency Interference (RFI) in time–frequency visibility data is an increasingly important challenge in radio astronomy. We present R-Net, a deep convolutional ResNet architecture that significantly outperforms existing algorithms – including the default MeerKAT RFI flagger, and deep U-Net architectures – across all metrics including AUC, F1-score, and MCC. We demonstrate the robustness of this improvement on both single dish and interferometric simulations and, using transfer learning, on real data. Our R-Net model’s precision is approximately $90{{\ \rm per\ cent}}$ better than the current MeerKAT flagger at $80{{\ \rm per\ cent}}$ recall and has a 35 per cent higher F1-score with no additional performance cost. We further highlight the effectiveness of transfer learning from a model initially trained on simulated MeerKAT data and fine-tuned on real, human-flagged, KAT-7 data. Despite the wide differences in the nature of the two telescope arrays, the model achieves an AUC of 0.91, while the best model without transfer learning only reaches an AUC of 0.67. We consider the use of phase information in our models but find that without calibration the phase adds almost no extra information relative to amplitude data only. Our results strongly suggest that deep learning on simulations, boosted by transfer learning on real data, will likely play a key role in the future of RFI flagging of radio astronomy data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.