Abstract

BackgroundTo assess the improvement of image quality and diagnostic acceptance of thinner slice iodine maps enabled by deep learning image reconstruction (DLIR) in abdominal dual-energy CT (DECT).MethodsThis study prospectively included 104 participants with 136 lesions. Four series of iodine maps were generated based on portal-venous scans of contrast-enhanced abdominal DECT: 5-mm and 1.25-mm using adaptive statistical iterative reconstruction-V (Asir-V) with 50% blending (AV-50), and 1.25-mm using DLIR with medium (DLIR-M), and high strength (DLIR-H). The iodine concentrations (IC) and their standard deviations of nine anatomical sites were measured, and the corresponding coefficient of variations (CV) were calculated. Noise-power-spectrum (NPS) and edge-rise-slope (ERS) were measured. Five radiologists rated image quality in terms of image noise, contrast, sharpness, texture, and small structure visibility, and evaluated overall diagnostic acceptability of images and lesion conspicuity.ResultsThe four reconstructions maintained the IC values unchanged in nine anatomical sites (all p > 0.999). Compared to 1.25-mm AV-50, 1.25-mm DLIR-M and DLIR-H significantly reduced CV values (all p < 0.001) and presented lower noise and noise peak (both p < 0.001). Compared to 5-mm AV-50, 1.25-mm images had higher ERS (all p < 0.001). The difference of the peak and average spatial frequency among the four reconstructions was relatively small but statistically significant (both p < 0.001). The 1.25-mm DLIR-M images were rated higher than the 5-mm and 1.25-mm AV-50 images for diagnostic acceptability and lesion conspicuity (all P < 0.001).ConclusionsDLIR may facilitate the thinner slice thickness iodine maps in abdominal DECT for improvement of image quality, diagnostic acceptability, and lesion conspicuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.