Abstract

Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house datasetallows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.