Abstract
Crowdsourcing is a popular solution for large-scale data annotations. So far, various end-to-end deep learning methods have been proposed to improve the practical performance of learning from crowds. Despite their practical effectiveness, most of them have two major limitations-they do not hold learning consistency and suffer from computational inefficiency. In this article, we propose a novel method named UnionNet, which is not only theoretically consistent but also experimentally effective and efficient. Specifically, unlike existing methods that either fit a given label from each annotator independently or fuse all the labels into a reliable one, we concatenate the one-hot encoded vectors of crowdsourced labels provided by all the annotators, which takes all the labeling information as a union and coordinates multiple annotators. In this way, we can directly train an end-to-end deep neural network by maximizing the likelihood of this union with only a parametric transition matrix. We theoretically prove the learning consistency and experimentally show the effectiveness and efficiency of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.