Abstract
The Arabic language belongs to a group of languages that require diacritization over their characters. Modern Standard Arabic (MSA) transcripts omit the diacritics, which are essential for many machine learning tasks like Text-To-Speech (TTS) systems. In this work Arabic diacritics restoration is tackled under a deep learning framework that includes the Confused Sub-set Resolution (CSR) method to improve the classification accuracy, in addition to an Arabic Part-of-Speech (PoS) tagging framework using deep neural nets. Special focus is given to syntactic diacritization, which still suffers low accuracy as indicated in prior works. Evaluation is done versus state-of-the-art systems reported in literature, with quite challenging datasets collected from different domains. Standard datasets like the LDC Arabic Tree Bank are used in addition to custom ones we have made available online to allow other researchers to replicate these results. Results show significant improvement of the proposed techniques over other approaches, reducing the syntactic classification error to 9.9% and morphological classification error to 3% compared to 12.7% and 3.8% of the best reported results in literature, improving the error by 22% over the best reported systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.