Abstract
This article is a scoping review of published and peer-reviewed articles using deep-learning (DL) applied to ultra-widefield (UWF) imaging. This study provides an overview of the published uses of DL and UWF imaging for the detection of ophthalmic and systemic diseases, generative image synthesis, quality assessment of images, and segmentation and localization of ophthalmic image features. A literature search was performed up to August 31st, 2021 using PubMed, Embase, Cochrane Library, and Google Scholar. The inclusion criteria were as follows: (1) deep learning, (2) ultra-widefield imaging. The exclusion criteria were as follows: (1) articles published in any language other than English, (2) articles not peer-reviewed (usually preprints), (3) no full-text availability, (4) articles using machine learning algorithms other than deep learning. No study design was excluded from consideration. A total of 36 studies were included. Twenty-three studies discussed ophthalmic disease detection and classification, 5 discussed segmentation and localization of ultra-widefield images (UWFIs), 3 discussed generative image synthesis, 3 discussed ophthalmic image quality assessment, and 2 discussed detecting systemic diseases via UWF imaging. The application of DL to UWF imaging has demonstrated significant effectiveness in the diagnosis and detection of ophthalmic diseases including diabetic retinopathy, retinal detachment, and glaucoma. DL has also been applied in the generation of synthetic ophthalmic images. This scoping review highlights and discusses the current uses of DL with UWF imaging, and the future of DL applications in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Graefe's Archive for Clinical and Experimental Ophthalmology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.