Abstract
In this work, a novel method for tumor margin identification in electromagnetic imaging is proposed to optimize the tumor removal surgery. This capability will enable the visualization of the border of the cancerous tissue for the surgeon prior or during the excision surgery. To this end, the border between the normal and tumor parts needs to be identified. Therefore, the images need to be segmented into tumor and normal areas. We propose a deep learning technique which divides the electromagnetic images into two regions: tumor and normal, with high accuracy. We formulate deep learning from a perspective relevant to electromagnetic image reconstruction. A recurrent auto-encoder network architecture (termed here DeepTMI) is presented. The effectiveness of the algorithm is demonstrated by segmenting the reconstructed images of an experimental tissue-mimicking phantom. The structure similarity measure (SSIM) and mean-square-error (MSE) average of normalized reconstructed results by the DeepTMI method are about 0.94 and 0.04 respectively, while that average obtained from the conventional backpropagation (BP) method can hardly overcome 0.35 and 0.41 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.