Abstract
Background and Objective: Esophageal high-resolution manometry (HRM) is widely performed to evaluate the representation of manometric features in patients for diagnosing normal esophageal motility and motility disorders. Clinicians commonly assess esophageal motility function using a scheme termed the Chicago classification, which is difficult, time-consuming and inefficient with large amounts of data. Methods: Deep learning is a promising approach for diagnosing disorders and has various attractive advantages. In this study, we effectively trace esophageal motility function with HRM by using a deep learning computational model, namely, EMD-DL, which leverages three-dimensional convolution (Conv3D) and bidirectional convolutional long-short-term-memory (BiConvLSTM) models. More specifically, to fully exploit wet swallowing information, we establish an efficient swallowing representation method by localizing manometric features and swallowing box regressions from HRM. Then, EMD-DL learns how to identify major motility disorders, minor motility disorders and normal motility. To the best of our knowledge, this is the first attempt to use Conv3D and BiConvLSTM to predict esophageal motility function over esophageal HRM. Results: Test experiments on HRM datasets demonstrated that the overall accuracy of the proposed EMD-DL model is 91.32% with 90.5% sensitivity and 95.87% specificity. By leveraging information across swallowing motor cycles, our model can rapidly recognize esophageal motility function better than a gastroenterologist and lays the foundation for accurately diagnosing esophageal motility disorders in real time. Conclusions: This approach opens new avenues for detecting and identifying esophageal motility function, thereby facilitating more efficient computer-aided diagnosis in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.