Abstract

Diseases and pests cause serious damage in crop production, reducing yield and fruit quality. Their identification is often time-consuming and requires trained personnel. New sensing technologies and artificial intelligence could be used for automatic identification of disease and pest symptoms on grapevine in precision viticulture. The aim of this work was to apply deep learning modelling and computer vision for the detection and differentiation of downy mildew and spider mite symptoms in grapevine leaves under field conditions. RGB images of grapevine canopy leaves with downy mildew symptoms, with spider mite symptoms and without symptoms were taken under field conditions in a commercial vineyard. The images were prepared using computer vision techniques to increase disease visual features. Finally, deep learning was used to train a model capable of differentiating leaf images of the three classes. An accuracy up to 0.94 (F1-score of 0.94) was obtained by classifying leaves with downy mildew, spider mite and without symptoms at the same time, using a hold-out validation. Additionally, accuracies between 0.89 and 0.91 (F1-scores between 0.89 and 0.91) were obtained in the binary classification of the disease and pest, obtaining the best results in differentiating downy mildew from spider mite symptoms. This high accuracy demonstrates the effectiveness of deep learning and computer vision techniques for the classification of grapevine leaf images taken under field conditions, automatically finding complex features capable of differentiating leaves with spider mite symptoms, with downy mildew symptoms and without any. These results prove the potential of these non-invasive techniques in the detection and differentiation of pests and diseases in commercial crop production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call