Abstract

Rainfall-runoff modeling in ungauged basins continues to be a great hydrological research challenge. A novel approach is the Long-Short-Term-Memory neural network (LSTM) from the Deep Learning toolbox, which few works have addressed its use for rainfall-runoff regionalization. This work aims to discuss the application of LSTM as a regional method against traditional neural network (FFNN) and conceptual models in a practical framework with adverse conditions: reduced data availability, shallow soil catchments with semiarid climate, and monthly time step. For this, the watersheds chosen were located on State of Ceará, Northeast Brazil. For streamflow regionalization, both LSTM and FFNN were better than the hydrological model used as benchmark, however, the FFNN were quite superior. The neural network methods also showed the ability to aggregate process understanding from different watersheds as the performance of the neural networks trained with the regionalization data were better with the neural networks trained for single catchments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call