Abstract

This paper presents a hybrid deep learning methodology for seismic structural monitoring, damage detection, and localization of instrumented buildings. The proposed methodology develops mechanics-based structural models to generate sample response datasets by accounting for the uncertainty of model parameters that can highly affect the estimation of baseline model nonlinear responses. The uncertainty of model parameters is evaluated through the design of experiments methodology by employing the central composite design for sampling. The generated sample response dataset is utilized for training a hybrid data-driven model that combines a convolutional neural network and wavelet packet transform modules for feature extraction. The global story-level noise-contaminated response measurements are used as input for the data-driven model to perform damage detection and localization in a manner consistent with performance-based design criteria. The performance of the proposed methodology is studied in the context of numerical and experimental case studies developed based on the shake table testing of a concentrically braced frame subject to various input ground motion intensities at the E-Defense facility in Miki, Japan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.