Abstract

To develop a screening tool for the detection of interstitial lung disease (ILD) patterns using a deep-learning method. A fully convolutional network was used for semantic segmentation of several ILD patterns. Improved segmentation of ILD patterns was achieved using multi-scale feature extraction. Dilated convolution was used to maintain the resolution of feature maps and to enlarge the receptive field. The proposed method was evaluated on a publicly available ILD database (MedGIFT) and a private clinical research database. Several metrics, such as success rate, sensitivity, and false positives per section were used for quantitative evaluation of the proposed method. Sections with fibrosis and emphysema were detected with a similar success rate and sensitivity for both databases but the performance of detection was lower for consolidation compared to fibrosis and emphysema. Automatic identification of ILD patterns in a high-resolution computed tomography (CT) image was implemented using a deep-learning framework. Creation of a pre-trained model with natural images and subsequent transfer learning using a particular database gives acceptable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.