Abstract
This research marks a transformative leap in personalized learning through real-time affective hand gesture recognition in EMASPEL (Emotional Multi-Agents System for Peer-to-peer E-Learning), an educational platform. Our deep learning model, a meticulously crafted ensemble of convolutional and recurrent neural networks, deciphers the unspoken language of emotions embedded within student gestures, accurately capturing both spatial and temporal patterns. This detailed emotional map empowers EMASPEL to tailor its interactions with exquisite precision, addressing frustration, nurturing curiosity, and maximizing student engagement. The impact is profound: students flourish in personalized learning environments, experiencing enhanced outcomes and a newfound connection to their educational journey. Teachers, equipped with real-time emotional insights, provide targeted support and cultivate a more inclusive, responsive classroom. Beyond gestures, we envision a future enriched by multimodal data integration, encompassing facial expressions, voice analysis, and potentially physiological sensors, to paint even richer portraits of student emotions and cognitive states. Continuous refinement through rigorous longitudinal studies will pave the way for deeper understanding and ensure responsible implementation. Ultimately, this research reimagines education as a dynamic ensemble of personalized learning, where technology serves as a bridge between teacher and student, unlocking not just academic success but a lifelong love of knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.