Abstract

ObjectiveMetabolic dysfunction-associated steatotic liver disease (MASLD) significantly impacts patients with type 2 diabetes mellitus (T2DM), where current non-invasive assessment methods show limited predictive power for future fibrotic progression. This study aims to develop an enhanced deep learning (DL) model that integrates ultrasound elastography images with clinical data, refining the prediction of fibrotic progression in T2DM patients with MASLD who initially exhibit no signs of hepatic fibrosis. MethodsWe enrolled 946 diabetic MASLD patients without advanced fibrosis, confirmed by initial liver stiffness measurements (LSM) below 6.5 kPa. Patients were divided into a training dataset of 671 and a testing dataset of 275. Hepatic shear wave elastography (SWE) images measured liver stiffness, classifying participants based on progression. A DL integrated model (DI-model) combining SWE images and clinical data was trained and its predictive performance compared with individual Image and Tabular models, as well as a logistic regression model on the testing dataset. ResultsFibrotic progression was observed in 18.1 % of patients over three years. During the training phase, the DI-model outperformed other models, achieving the lowest validation loss of 0.161 and highest accuracy of 0.933 through cross-validation. In the testing phase, it demonstrated robust discrimination with AUCs of 0.884 and 0.903 for the receiver operating characteristic and precision-recall curves, respectively, clearly outperforming other models. Shapley analysis identified BMI, LSM, and glycated hemoglobin as critical predictors. ConclusionThe DI-model significantly enhances the prediction of future fibrotic progression in diabetic MASLD patients, demonstrating the benefit of combining clinical and imaging data for early diagnosis and intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.