Abstract
Wireless capsule endoscopy (WCE) enables physicians to examine the digestive tract without any surgical operations, at the cost of a large volume of images to be analyzed. In the computer-aided diagnosis of WCE images, the main challenge arises from the difficulty of robust characterization of images. This study aims to provide discriminative description of WCE images and assist physicians to recognize polyp images automatically. We propose a novel deep feature learning method, named stacked sparse autoencoder with image manifold constraint (SSAEIM), to recognize polyps in the WCE images. Our SSAEIM differs from the traditional sparse autoencoder (SAE) by introducing an image manifold constraint, which is constructed by a nearest neighbor graph and represents intrinsic structures of images. The image manifold constraint enforces that images within the same category share similar learned features and images in different categories should be kept far away. Thus, the learned features preserve large intervariances and small intravariances among images. The average overall recognition accuracy (ORA) of our method for WCE images is 98.00%. The accuracies for polyps, bubbles, turbid images, and clear images are 98.00%, 99.50%, 99.00%, and 95.50%, respectively. Moreover, the comparison results show that our SSAEIM outperforms existing polyp recognition methods with relative higher ORA. The comprehensive results have demonstrated that the proposed SSAEIM can provide descriptive characterization for WCE images and recognize polyps in a WCE video accurately. This method could be further utilized in the clinical trials to help physicians from the tedious image reading work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.