Abstract

Patent landscaping is used to search for related patents during research and development projects. Patent landscaping is a crucial task required during the early stages of an R & D project to avoid the risk of patent infringement and to follow current trends in technology. The first task of patent landscaping is to extract the target patent for analysis from a patent database. Because patent classification for patent landscaping requires advanced human resources and can be tedious, the demand for automated patent classification has gradually increased. However, a shortage of well-defined benchmark datasets and comparable models makes it difficult to find related research studies. This paper proposes an automated patent classification model for patent landscaping based on transformer and graph embedding, both of which are drawn from deep learning. The proposed model uses a transformer architecture to derive text embedding from patent abstracts and uses a graph neural network to derive graph embedding from classification code co-occurrence information and concatenates them. Furthermore, we introduce four benchmark datasets to compare related research studies on patent landscaping. The obtained results showed prominent performance that was actually applicable to our dataset and comparable to the model using BERT, which has recently shown the best performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.