Abstract

Sparse-spike deconvolution (SSD) is an important method for seismic resolution enhancement. With the wavelet given, many trace-by-trace SSD methods have been proposed for extracting an estimate of the reflection-coefficient series from stacked traces. The main drawbacks of trace-by-trace methods are that they neither use the information from the adjacent seismograms nor do they take full advantage of the inherent spatial continuity of the seismic data. Although several multitrace methods have been consequently proposed, these methods generally rely on different assumptions and theories and require different parameter settings for different data applications. Therefore, traditional methods demand intensive human-computer interaction. This requirement undoubtedly does not fit the current dominant trend of intelligent seismic exploration. Therefore, we have developed a deep learning (DL)-based multitrace SSD approach. The approach transforms the input 2D/3D seismic data into the corresponding SSD result by training end-to-end encoder-decoder-style 2D/3D convolutional neural networks (CNN). Our key motivations are that DL is effective for mining complicated relations from data, the 2D/3D CNN can take multitrace information into account naturally, the additional information contributes to the SSD result with better spatial continuity, and parameter tuning is not necessary for CNN predictions. We determine the significance of the learning rate for the training process’s convergence. Benchmarking tests on the field 2D/3D seismic data confirm that the approach yields accurate high-resolution results that are mostly in agreement with the well logs, the DL-based multitrace SSD results generated by the 2D/3D CNNs are better than the trace-by-trace SSD results, and the 3D CNN outperforms the 2D CNN for 3D data application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call