Abstract
This letter considers uplink massive MIMO systems with 1-bit analog-to-digital converters (ADCs) and develops a deep-learning based channel estimation framework. In this framework, the prior channel estimation observations and deep neural networks are leveraged to learn the non-trivial mapping from quantized received measurements to channels. For that, we derive the sufficient length and structure of the pilot sequence to guarantee the existence of this mapping function. This leads to the interesting, and counter-intuitive, observation that when more base-station antennas are employed, our proposed deep learning approach achieves better channel estimation performance, for the same pilot sequence length. Equivalently, for the same channel estimation performance, this means that when more antennas are employed, fewer pilots are required. This observation is also analytically proved for some special channel models. Simulation results confirm our observations and show that more antennas lead to better channel estimation in terms of the normalized mean squared error and the receive signal-to-noise ratio per antenna.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.