Abstract

The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic interferometric SAR (InSAR) acquisitions, which provide additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which can be derived from the bistatic interferometric coherence, is a reliable indicator of the presence of vegetation and it was used as main input feature for the generation of the global TanDEM-X forest/non-forest map, by means of a clustering algorithm. In this work, we investigate the capabilities of deep Convolutional Neural Networks (CNNs) for mapping tropical forests at large-scale using TanDEM-X InSAR data. For this purpose, we rely on a U-Net architecture, which takes as input a set of feature maps selected on the basis of previous preparatory works. Moreover, we design an ad hoc training strategy, aimed at developing a robust model for global mapping purposes, which has to properly manage the large variety of different acquisition geometries characterizing the TanDEM-X global data set. In addition to detecting forest/non-forest areas, the CNN has also been trained to detect water surfaces, which are typically characterized by low values of coherence. By applying the proposed method on single TanDEM-X images, we achieved a significant performance improvement with respect to the baseline clustering approach, with an average F-score increase of 0.13. We then applied such a model for mapping the entire Amazon rainforest, as well as the other tropical forests in Central Africa and South-East Asia, in order to test its robustness and generalization capabilities, and we observed that forests are typically well detected as contour closed regions and that water classification is reliable, too. Finally, the generated maps show a great potential for mapping temporal changes occurring over forested areas and can be used for generating large-scale maps of deforestation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call