Abstract
Methods of ablation imprints in solid targets are widely used to characterize focused X-ray laser beams due to a remarkable dynamic range and resolving power. A detailed description of intense beam profiles is especially important in high-energy-density physics aiming at nonlinear phenomena. Complex interaction experiments require an enormous number of imprints to be created under all desired conditions making the analysis demanding and requiring a huge amount of human work. Here, for the first time, we present ablation imprinting methods assisted by deep learning approaches. Employing a multi-layer convolutional neural network (U-Net) trained on thousands of manually annotated ablation imprints in poly(methyl methacrylate), we characterize a focused beam of beamline FL24/FLASH2 at the Free-electron laser in Hamburg. The performance of the neural network is subject to a thorough benchmark test and comparison with experienced human analysts. Methods presented in this Paper pave the way towards a virtual analyst automatically processing experimental data from start to end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.