Abstract
In engineering practice, ground penetrating radar (GPR) records are often hindered by clutter resulting from uneven underground media distribution, affecting target signal characteristics and precise positioning. To address this issue, we propose a method combining deep learning preprocessing and reverse time migration (RTM) imaging. Our preprocessing approach introduces a novel deep learning framework for GPR clutter, enhancing the network’s feature-capture capability for target signals through the integration of a contextual feature fusion module (CFFM) and an enhanced spatial attention module (ESAM). The superiority and effectiveness of our algorithm are demonstrated by RTM imaging comparisons using synthetic and laboratory data. The processing of actual road data further confirms the algorithm’s significant potential for practical engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.