Abstract
Seismic imaging techniques play a crucial role in interpreting subsurface geological structures by analyzing the propagation and reflection of seismic waves. However, traditional methods face challenges in achieving high resolution due to theoretical constraints and computational costs. Leveraging recent advancements in deep learning, this study introduces a neural network framework that integrates Transformer and Convolutional Neural Network (CNN) architectures, enhanced through Adaptive Spatial Feature Fusion (ASFF), to achieve high-resolution seismic imaging. Our approach directly maps seismic data to reflection models, eliminating the need for post-processing low-resolution results. Through extensive numerical experiments, we demonstrate the outstanding ability of this method to accurately infer subsurface structures. Evaluation metrics including Root Mean Square Error (RMSE), Correlation Coefficient (CC), and Structural Similarity Index (SSIM) emphasize the model's capacity to faithfully reconstruct subsurface features. Furthermore, noise injection experiments showcase the reliability of this efficient seismic imaging method, further underscoring the potential of deep learning in seismic imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.