Abstract
By leveraging monitoring data for the Gran Sasso carbonate aquifer during two significant seismic sequences that hit central Italy in recent years, this study investigates the possibility of using memory-enabled deep learning algorithms as meaningful tools for an enhanced modelling of the hydrological response of karst aquifers subject to earthquake phenomena. Meteorological, hydrological and seismic data are used to train and validate long short-term memory networks (LSTM) in one- and multiple-day ahead flow forecasting exercises, aimed at assessing model sensitivities to input variables and modelling choices (training data and parameters of the models). Results indicate that the models fairly reproduce the flow patterns for the considered spring in the Gran Sasso aquifer, thus supporting the potential use of these models for hydrological applications in similar areas, provided that sufficient data are available for the training of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.