Abstract

BackgroundTo evaluate the diagnostic efficacy of Densely Connected Convolutional Networks (DenseNet) for detection of COVID-19 features on high resolution computed tomography (HRCT).MethodsThe Ethic Committee of our institution approved the protocol of this study and waived the requirement for patient informed consent. Two hundreds and ninety-five patients were enrolled in this study (healthy person: 149; COVID-19 patients: 146), which were divided into three separate non-overlapping cohorts (training set, n=135, healthy person, n=69, patients, n=66; validation set, n=20, healthy person, n=10, patients, n=10; test set, n=140, healthy person, n=70, patients, n=70). The DenseNet was trained and tested to classify the images as having manifestation of COVID-19 or as healthy. A radiologist also blindly evaluated all the test images and rechecked the misdiagnosed cases by DenseNet. Receiver operating characteristic curves (ROC) and areas under the curve (AUCs) were used to assess the model performance. The sensitivity, specificity and accuracy of DenseNet model and radiologist were also calculated.ResultsThe DenseNet algorithm model yielded an AUC of 0.99 (95% CI: 0.958–1.0) in the validation set and 0.98 (95% CI: 0.972–0.995) in the test set. The threshold value was selected as 0.8, while for validation and test sets, the accuracies were 95% and 92%, the sensitivities were 100% and 97%, the specificities were 90% and 87%, and the F1 values were 95% and 93%, respectively. The sensitivity of radiologist was 94%, the specificity was 96%, while the accuracy was 95%.ConclusionsDeep learning (DL) with DenseNet can accurately classify COVID-19 on HRCT with an AUC of 0.98, which can reduce the miss diagnosis rate (combined with radiologists’ evaluation) and radiologists’ workload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.