Abstract

PurposeThis study aimed to develop and validate a deep learning-based method that allows for segmental analysis of myocardial late gadolinium enhancement (LGE) lesions. MethodsCardiac LGE data from 170 patients with coronary artery disease and non-ischemic heart disease were used for training, validation, and testing. Short-axis images were transformed to polar space after identification of the left ventricular (LV) center point and anterior right ventricular (RV) insertion point. Images were obtained after dividing the polar transformed images into segments based on the 16-segment LV model. Five different deep convolutional neural network (CNN) models were developed and validated using the labeled data, where the image after the division corresponded to a segment, and the lesion labeling was based on the 16-segment LV model. Unseen testing data were used to evaluate the performance of the lesion classification. ResultsWithout manual lesion segmentation and annotation, the proposed method showed an area under the curve (AUC) of 0.875, and a precision, recall, and F1-score of 0.723, 0.783, and 0.752, respectively for the lesion class when the pretrained ResNet50 model was tested for all slice images. The two pretrained models of ResNet50 and EfficientNet-B0 outperformed the three non-pretrained CNN models in terms of AUCs (0.873–0.875 vs. 0.834–0.841). ConclusionThe proposed method is based on learning a deep CNN model from polar transformed images to predict LGE lesions with good accuracy and does not require time-consuming annotation procedures such as lesion segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.