Abstract

<p>The COVID-19 pandemic led to the lockdown of over one-third of Chinese cities in early 2020. Observations have shown significant reductions of atmospheric abundances of NO<sub>2</sub> over China during this period. This change in atmospheric NO<sub>2</sub> implies a dramatic change in emission of NO<sub>x</sub>, which provides a unique opportunity to study the response of the chemistry of the atmospheric to large reductions in anthropogenic emissions. We use a deep learning (DL) model to quantify the change in surface emissions of NO<sub>x</sub> in China that are associated with the observed changes in atmospheric NO<sub>2</sub> during the lockdown period. Compared to conventional data assimilation systems, deep neural networks are free of the potential errors associated with parameterized subgrid-scale processes. Furthermore, they are not susceptible to the chemical errors typically found in atmospheric chemical transport models. The neural-network-based approach also offers a more computationally efficient means of inverse modeling of NO<sub>x</sub> emissions at high spatial resolutions. Our DL model is trained using meteorological predictors and reanalysis data of surface NO<sub>2</sub> from 2005 to 2017. The evaluation is conducted using in-situ measurements of NO<sub>2</sub> in 2019 and 2020. The Baidu 'Qianxi' migration data sets are used to evaluate the model's performance in capturing the typical variation in Chinese NOx emissions during the Chinese New Year holidays. The TROPOMI-derived TCR-2 chemical reanalysis is used to evaluate the DL analysis in 2020. We show that the DL-based approach is able to better reproduce the variation in anthropogenic NO<sub>x</sub> emissions and capture the reduction in Chinese NO<sub>x</sub> emissions during the period of the COVID-19 pandemic.</p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.