Abstract
Entity matching (EM) finds data instances that refer to the same real-world entity. Most EM solutions perform blocking then matching. Many works have applied deep learning (DL) to matching, but far fewer works have applied DL to blocking. These blocking works are also limited in that they consider only a simple form of DL and some of them require labeled training data. In this paper, we develop the DeepBlocker framework that significantly advances the state of the art in applying DL to blocking for EM. We first define a large space of DL solutions for blocking, which contains solutions of varying complexity and subsumes most previous works. Next, we develop eight representative solutions in this space. These solutions do not require labeled training data and exploit recent advances in DL (e.g., sequence modeling, transformer, self supervision). We empirically determine which solutions perform best on what kind of datasets (structured, textual, or dirty). We show that the best solutions (among the above eight) outperform the best existing DL solution and the best existing non-DL solutions (including a state-of-the-art industrial non-DL solution), on dirty and textual data, and are comparable on structured data. Finally, we show that the combination of the best DL and non-DL solutions can perform even better, suggesting a new venue for research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.