Abstract

The highly complementary information provided by multispectral optoacoustics and pulse-echo ultrasound have recently prompted development of hybrid imaging instruments bringing together the unique contrast advantages of both modalities. In the hybrid optoacoustic ultrasound (OPUS) combination, images retrieved by one modality may further be used to improve the reconstruction accuracy of the other. In this regard, image segmentation plays a major role as it can aid improving the image quality and quantification abilities by facilitating modeling of light and sound propagation through the imaged tissues and surrounding coupling medium. Here, we propose an automated approach for surface segmentation in whole-body mouse OPUS imaging using a deep convolutional neural network (CNN). The method has shown robust performance, attaining accurate segmentation of the animal boundary in both optoacoustic and pulse-echo ultrasound images, as evinced by quantitative performance evaluation using Dice coefficient metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.