Abstract

Background and AimsCapsule endoscopy (CE) revolutionized the study of the small intestine, overcoming the limitations of conventional endoscopy. Nevertheless, reviewing CE images is time-consuming. Convolutional Neural Networks (CNNs) are an artificial intelligence architecture with high performance levels for image analysis. Protruding lesions of the small intestine exhibit enormous morphologic diversity in CE images. We aimed to develop a CNN-based algorithm for automatic detection of varied small-bowel protruding lesions.MethodsA CNN was developed using a pool of CE images containing protruding lesions or normal mucosa/other findings. A total of 2565 patients were included. These images were inserted into a CNN model with transfer learning. We evaluated the performance of the network by calculating its sensitivity, specificity, accuracy, positive predictive value, and negative predictive value.ResultsA CNN was developed based on a total of 21,320 CE images. Training and validation data sets comprising 80% and 20% of the total pool of images, respectively, were constructed for development and testing of the network. The algorithm automatically detected small-bowel protruding lesions with an accuracy of 97.1%. Our CNN had a sensitivity, specificity, positive, and negative predictive values of 95.9%, 97.1%, 83.0%, and 95.7%, respectively. The CNN operated at a rate of approximately 355 frames per second.ConclusionWe developed an accurate CNN for automatic detection of enteric protruding lesions with a wide range of morphologies. The development of these tools may enhance the diagnostic efficiency of CE. Capsule endoscopy (CE) revolutionized the study of the small intestine, overcoming the limitations of conventional endoscopy. Nevertheless, reviewing CE images is time-consuming. Convolutional Neural Networks (CNNs) are an artificial intelligence architecture with high performance levels for image analysis. Protruding lesions of the small intestine exhibit enormous morphologic diversity in CE images. We aimed to develop a CNN-based algorithm for automatic detection of varied small-bowel protruding lesions. A CNN was developed using a pool of CE images containing protruding lesions or normal mucosa/other findings. A total of 2565 patients were included. These images were inserted into a CNN model with transfer learning. We evaluated the performance of the network by calculating its sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. A CNN was developed based on a total of 21,320 CE images. Training and validation data sets comprising 80% and 20% of the total pool of images, respectively, were constructed for development and testing of the network. The algorithm automatically detected small-bowel protruding lesions with an accuracy of 97.1%. Our CNN had a sensitivity, specificity, positive, and negative predictive values of 95.9%, 97.1%, 83.0%, and 95.7%, respectively. The CNN operated at a rate of approximately 355 frames per second. We developed an accurate CNN for automatic detection of enteric protruding lesions with a wide range of morphologies. The development of these tools may enhance the diagnostic efficiency of CE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call