Abstract
Endoscopic ultrasound (EUS) morphology can aid in the discrimination between mucinous and non-mucinous pancreatic cystic lesions (PCLs) but has several limitations that can be overcome by artificial intelligence. We developed a convolutional neural network (CNN) algorithm for the automatic diagnosis of mucinous PCLs. Images retrieved from videos of EUS examinations for PCL characterization were used for the development, training, and validation of a CNN for mucinous cyst diagnosis. The performance of the CNN was measured calculating the area under the receiving operator characteristic curve (AUC), sensitivity, specificity, and positive and negative predictive values. A total of 5505 images from 28 pancreatic cysts were used (3725 from mucinous lesions and 1780 from non-mucinous cysts). The model had an overall accuracy of 98.5%, sensitivity of 98.3%, specificity of 98.9% and AUC of 1. The image processing speed of the CNN was 7.2 ms per frame. We developed a deep learning algorithm that differentiated mucinous and non-mucinous cysts with high accuracy. The present CNN may constitute an important tool to help risk stratify PCLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.