Abstract
Convolutional neural networks (CNN) have demonstrated state-of-the-art classification results in image categorization, but have received comparatively little attention for classification of one-dimensional physiological signals. We design a deep CNN architecture for automated sleep stage classiffication of human sleep EEG and EOG signals. The CNN proposed in this paper amply outperforms recent work that uses a different CNN architecture over a single-EEG-channel version of the same dataset. We show that the performance gains achieved by our network rely mainly on network depth, and not on the use of several signal channels. Performance of our approach is on par with human expert inter-scorer agreement. By examining the internal activation levels of our CNN, we find that it spontaneously discovers signal features such as sleep spindles and slow waves that figure prominently in sleep stage categorization as performed by human experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.