Abstract

Correction of chromatic aberration is an important issue in color imaging and display. However, realizing broadband achromatic imaging by a singlet lens with high comprehensive performance still remains challenging, though many achromatic flat lenses have been reported recently. Here, we propose a deep-learning-enhanced singlet planar imaging system, implemented by a 3 mm-diameter achromatic flat lens, to achieve relatively high-quality achromatic imaging in the visible. By utilizing a multi-scale convolutional neural network (CNN) imposed to an achromatic multi-level diffractive lens (AMDL), the white light imaging qualities are significantly improved in both indoor and outdoor scenarios. Our experiments are fulfilled via a large paired imaging dataset with respect to a 3 mm-diameter AMDL, which guaranteed with achromatism in a broad wavelength range (400-1100 nm) but a relative low efficiency (∼45%). After our CNN enhancement, the imaging qualities are improved by ∼2 dB, showing competitive achromatic and high-quality imaging with a singlet lens for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call