Abstract

Aggregation-based assays, using micro- and nano-particles have been widely accepted as an efficient and cost-effective bio-sensing tool, particularly in microbiology, where particle clustering events are used as a metric to infer the presence of a specific target analyte and quantify its concentration. Here, we present a sensitive and automated readout method for aggregation-based assays using a wide-field lens-free on-chip microscope, with the ability to rapidly analyze and quantify microscopic particle aggregation events in 3D, using deep learning-based holographic image reconstruction. In this method, the computation time for hologram reconstruction and particle autofocusing steps remains constant, regardless of the number of particles/clusters within the 3D sample volume, which provides a major throughput advantage, brought by deep learning-based image reconstruction. As a proof of concept, we demonstrate rapid detection of herpes simplex virus (HSV) by monitoring the clustering of antibody-coated micro-particles, achieving a detection limit of ~5 viral copies per micro-liter (i.e., ~25 copies per test).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.