Abstract

BackgroundDeep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. ObjectivesWe developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. MethodsWe trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. ResultsDeep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. ConclusionsDeep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.