Abstract
Large-scale Multiple-Input Multiple Output (MIMO) is the key technology of 5G communication. However, dealing with physical channels is a complex process. Machine learning techniques have not been utilized commercially because of the limited learning capabilities of traditional machine learning algorithms. We design a deep learning hybrid precoding scheme based on the attention mechanism. The method mainly includes channel modeling and deep learning encoding two modules. The channel modeling module mainly describes the problem formally, which is convenient for the subsequent method design and processing. The model design module introduces the design framework, details, and main training process of the model. We utilize the attention layer to extract the eigenvalues of the interference between multiple users through the output attention distribution matrix. Then, according to the characteristics of inter-user interference, the loss minimization function is used to study the optimal precoder to achieve the maximum reachable rate of the system. Under the same condition, we compare our proposed method with the traditional unsupervised learning-based hybrid precoding algorithm, the TTD-based (True-Time-Delay, TTD) phase correction hybrid precoding algorithm, and the deep learning-based method. Additionally, we verify the role of attention mechanism in the model. Extensive simulation results demonstrate the effectiveness of the proposed method. The results of this research prove that deep learning technology can play a driving role in the encoding and processing of MIMO with its unique feature extraction and modeling capabilities. In addition, this research also provides a good reference for the application of deep learning in MIMO data processing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.