Abstract

Documenting the interplay between slow deformation and seismic ruptures is essential to understand the physics of earthquakes nucleation. However, slow deformation is often difficult to detect and characterize. The most pervasive seismic markers of slow slip are low-frequency earthquakes (LFEs) that allow resolving deformation at minute-scale. Detecting LFEs is hard, due to their emergent onsets and low signal-to-noise ratios, usually requiring region-specific template matching approaches. These approaches suffer from low flexibility and might miss LFEs as they are constrained to sources identified a priori. Here, we develop a deep learning-based workflow for LFE detection and location, modeled after classical earthquake detection with phase picking, phase association, and location. Across three regions with known LFE activity, we detect LFEs from both previously cataloged sources and newly identified sources. Furthermore, the approach is transferable across regions, enabling systematic studies of LFEs in regions without known LFE activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.