Abstract
Two-dimensional (2D)-3D registration is challenging in the presence of implant projections on intraoperative images, which can limit the registration capture range. Here, we investigate the use of deep-learning-based inpainting for removing implant projections from the X-rays to improve the registration performance. We trained deep-learning-based inpainting models that can fill in the implant projections on X-rays. Clinical datasets were collected to evaluate the inpainting based on six image similarity measures. The effect of X-ray inpainting on capture range of 2D-3D registration was also evaluated. The X-ray inpainting significantly improved the similarity between the inpainted images and the ground truth. When applying inpainting before the 2D-3D registration process, we demonstrated significant recovery of the capture range by up to 85%. Applying deep-learning-based inpainting on X-ray images masked by implants can markedly improve the capture range of the associated 2D-3D registration task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Medical Robotics and Computer Assisted Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.