Abstract

Forests are essential natural resources that directly impact the ecosystem. However, the rising frequency of forest fires due to natural and artificial climate change has become a critical issue. A revolutionary municipal application proposes deploying an artificial intelligence-based forest fire warning system to prevent major disasters. This work aims to present an overview of vision-based methods for detecting and categorizing forest fires. The study employs a forest fire detection dataset to address the classification difficulty of discriminating between photos with and without fire. This method is based on convolutional neural network transfer learning with Inception-v3. Thus, automatic identification of current forest fires (including burning biomass) is a critical field of research for reducing negative repercussions. Early fire detection can also assist decision-makers in developing mitigation and extinguishment strategies. Radial basis function Networks (RBFNs) with rapid and accurate image super resolution (RAISR) is a deep learning framework trained on an input dataset to detect active fires and burning biomass. The proposed RBFN-RAISR model’s performance in recognizing fires and nonfires was compared to earlier CNN models using several performance criteria. The water wave optimization technique is used for image feature selection, noise and blurring reduction, image improvement and restoration, and image enhancement and restoration. When classifying fire and no-fire photos, the proposed RBFN-RAISR fire detection approach achieves 97.55% accuracy, 93.33% F-Score, 96.44% recall, 94.19% precision, and an error rate of 24.89. Given the one-of-a-kind forest fire detection dataset, the suggested method achieves promising results for the forest fire categorization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.